Author: Lee, Seok-Woo

Shuyang finished his PhD defense successfully!

Shuyang finished his PhD defense successfully. Many congratulations!

He gave a wonderful presentation on mechanical properties of SrNi2P2 single crystals, which show unusual superplastic behavior via lattice collapse and expansion. He has investigated tension-compression asymmetry, temperature effect, and composition effect.

Title: Mechanical behavior of SrNi2P2 single crystals at small length scales

Committee:

Prof. Seok-Woo Lee (major advisor)

Prof. Mark Aindow

Prof. George Rossetti Jr.

Prof. Rainer Hebert

Prof. Jasna Jankic

Date/Time: Wednesday, April 5, 2023. 10:00 AM

Location: Science One 1002

 Abstract: Elastic strain limit, which is the measure of the maximum allowed fractional change in material length before a permanent shape change occurs, is the quantity used to describe the elastic deformability of materials. Superelasticity is the recoverable deformation associated with the reversible structural transition, which often leads to the large maximum recoverable strain. Achieving superelasticity is important for various engineering applications, which require a reliable impact protection, strain engineering, elastocaloric effect, and shape memory effect. In 1985, Hoffmann and Zhang postulated the possibility of forming and breaking Si-type bonds in ThCr2Si2-structured intermetallic compounds under uniaxial deformation along their c-axis, which could lead to superelasticity via the unique reversible structural transition, lattice collapse and expansion, respectively. By reviewing crystallographic data of a wide variety of known ThCr2Si2-structured compounds, SrNi2P2 has been identified as one of the most likely candidates to have a relatively small critical stress of structural transition, which would allow us to observe the structural transition and superelasticity before fracture occurs.

In this study, micro-compression test, micro-tensile test, and nanoindentation were conducted on SrNi2P2 single crystals along c-axis direction and confirmed that superelasticity indeed occurs through the lattice collapse and expansion process that Hoffman and Zhang suggested. This unique structural process enables excellent fatigue resistance and the efficient elastocaloric cooling. The phase diagram in stress-temperature space was also constructed with cryogenic mechanical data. In addition, the critical role of anisotropic residual stress, which could be developed by a doped element, in superelasticity and plasticity has been identified. It is noteworthy to mention that theoretical calculation predicts the presence of ~2500 ThCr2Si2-type intermetallic compounds. Therefore, all the results not only provide a fundamental insight into the understanding of the structure and mechanical properties of SrNi2P2 but also suggest a strong possibility to discover another superelastic ThCr2Si2-type intermetallic compounds. This new class of superelastic materials could be useful for the development of impact-resistant materials for structural applications, cryogenic linear actuators for space engineering, and elastocaloric cooling systems for refrigeration.

Jessica’s spinel paper is published at Acta Materialia! Congrats!

Jessica’s study on mechanical properties of nanocrystalline MgAl2O4 is published at Acta Materialia! Many congratulations! This works used nanoindentation, microvillar compression, and micro-cantilever bending extensively to investigate the grain size effect on hardenss, yield strength, and fracture toughness. The significant improvement in fracture toughness when the grain size becomes smaller than 10.5nm provides a great promise to develop a high toughness ceramic! Wonderful works!

Jessica M. Maita, Sarshad Rommel, Jacob R. Davis, James A. Wollmershauser, Edward P. Gorzkowski, Boris N. Feigelson, Mark Aindow, Seok-Woo Lee, “Grain size dependence of mechanical properties of nanocrystalline magnesium aluminate MgAl2O4,” Acta Materialia, in press (2023) [PDF][web]

 

 

Shuyang and Zhongyuan attended the TMS 2023!

Shuyang and Zhongyuan gave a presentation at the TMS 2023 at San Diego, CA!

  • Zhongyuan Li: Micro-mechanical characterization on amorphous carbon and its nanoporous structures (Poster Presentation)
  • Shuyang Xiao: Multi-stage superelasticity in SrNi2P2 intermetallic compound via lattice collapse and expansion and the influence of cryogenic temperature (Oral presentation)

 

 

Zhongyuan’s paper was published at Materials & Design! Congrats!

Zhongyuan’s paper was just published at Materials & Design! Many Congratulations! This work demonstrates how to develop a nano-composite material that can absorb and release the large elastic strain energy.

Zhongyuan Li, Jinlong He, Nikhil Tiwale, Keith J. Dusoe, Chang-Yong Nam, Ying Li, Seok-Woo Lee, “Unraveling the ultrahigh modulus of resilience of sequential-infiltrated core-shell polymer nanocomposite nanopillars,Materials & Design, 227, 111770 (2023) [PDF][web]

Abstract: Modulus of resilience, the maximum strain energy density that can be stored in an elastically deformed solid, is an important mechanical property for developing artificial muscles in robotics, soft electronics panels, and micro-/nano-electromechanical actuators. In this study, core–shell SU-8 nanocomposites were fabricated via vapor-phase infiltration of nanoscale amorphous aluminum oxides into SU-8 nanopillars and performed transmission electron microscopy, nanomechanical testing, analytical modeling, and atomistic simulations to gain a fundamental insight into the ultrahigh modulus of resilience much higher than that of most high-strength materials. This study shows that the ultrahigh modulus of resilience results from: the low aspect ratio of amorphous aluminum oxide nano-particulates; the particulate size thicker than the free volume size; and the thin aluminum oxide interconnecting links within nano-particulates. These unique microstructural features produce the unusual combination of low specific Young’s modulus, 4 MPa/(kg/m3), and high specific yield strength, 0.2 MPa/(kg/m3), leading to the specific modulus of resilience, 5.21 ± 0.39 kJ/kg about ten times higher than materials with the similar yield strength. This study demonstrates that vapor-phase infiltration is an excellent fabrication method to produce a polymer nanocomposite that can absorb and release a large amount of elastic strain energy.

[Late Update] Zhongyuan and Shuyang attended the MRS Fall 2022!

Zhongyuan and Shuyang attended the MRS Fall 2022!

 

Multi-Stage Superelasticity in SrNi2P2 Intermetallic Compound via Lattice Collapse and Expansion and the Influence of Cryogenic Temperature

Shuyang Xiao, Vladislav Borisov, Adrian Valadani, Guilherme Gorgen-Lesseux, Roser Valenti, Paul Canfield, Seok-Woo Lee

Abstract: Superelastic crystalline solids are able to recover their original shape even after the large amount of deformation is applied. The shape recovery of most superelastic crystalline solids usually occurs through a reversible phase transition between martensitic and austenitic phase. Although this shear process provides up to ~10% of elastic strain, there are several issues that limit their elastic performance. Usually, this shear process requires high activation temperature to reverse the phase transition. So, it is difficult to exhibit superelasticity at cryogenic temperature. Also, the shear process often drives dislocations to move and causes large accumulation of dislocations, which eventually prevent the reversal of phase transition. Therefore, it is desirable to seek out a new class of superelastic material that can overcome these issues through a completely different superelasticity mechanism. In this presentation, we report our first discovery of the giant superlelasticity in a novel intermetallic compound SrNi2P2 via a unique phase transition process, lattice collapse-expansion and the influence of cryogenic temperature.

SrNi2P2 single crystals were grown using solution-growth technique, and in-situ uniaxial compression and tension tests on [001]-oriented SrNi2P2 micropillars, which were fabricated using focused-ion-beam milling, were conducted at room temperature, 200K, and 100K. Room temperature mechanical testing revealed the giant superelasiticity with a remarkably huge elastic strain limit near 20% if both compression and tension are considered. Up to our knowledge, this giant elastic strain corresponds to one of the highest elastic strain limits ever reported for crystalline solids. This excellent superelastic performance is achieved through multiple-stage lattice collapse and expansion under compression and tension by forming and breaking P-P bonds in two co-existing different crystal structures in SrNi2P2. Based on Density Function Theory (DFT) calculation and High-Resolution Transmission Electron Microscope (HRTEM), P-P bonds are formed or broken partially depending on the stress state, leading to the multi-stage lattice collapse and expansion. Fraction of P-P bonds seems to be controlled primarily by entropy under a given stress, so the total number of P-P bonds is determined by thermodynamics under a give stress and temperature. Unlike shear process of martensite-austenite transition, no dislocation is involved in the superelasticity process of SrNi2P2. Simple making and breaking bond process seems to guarantee ultrahigh fatigue life with presumably nearly infinite number of cycles. Our state-of-the-art in-situ cryogenic nanomechanical testing revealed that forming and breaking P-P bonds is strongly sensitive to cryogenic temperature. At lower temperature, phase transition becomes easier under compression but more difficult under tension. This difference can be explained by thermal contraction. Due to the thermal contraction at lower temperature, which reduces P-P distance, making P-P bonds becomes easier, but breaking P-P bonds becomes more difficult. One noticeable result is that even under cryogenic environment (~100K), SrNi2P2 still exhibit superelasticity, implying that SrNi2P2 is capable of shape recovery at very low temperature unlike conventional superelastic crystalline solids such as Ni-Ti intermetallic compounds. Our experimental and computational results provide a fundamental insight into understanding the superelasticity mechanisms of SrNi2P2. Furthermore, our work suggests its strong potential as a cryogenic superelastic material that could be useful to develop an impact resistance material for aerospace engineering under cryogenic environment.

 

Micro-Mechanical Characterization on Amorphous Carbon and Its Nanoporous Structures

Zhongyuan Li, Ayush Bhardwaj, James Watkins, Seok-Woo Lee

Abstract: Carbon-related nanostructured materials have a strong potential as a mechanical reinforcement material due to their strong ionic/covalent C-C bond, which restricts the motion of dislocation, the carrier of plasticity. However, their brittleness and relatively high density limits their structural application. In this study, therefore, we have developed amorphous carbon with almost no short-range ordering and its nanoporous structures, where the ligand thickness is only around 10nm, by rapid thermal annealing of Brush block copolymer and Phenol formaldehyde. To evaluate the mechanical response, we perform the nanoindentation tests and in-situ compression tests on a micropillar, which was fabricated by utilizing focused-ion-beam milling. Both fully dense and nanoporous structures exhibit a large compressive fracture strain up to ~40% with a significantly high work hardening rate. Raman spectroscopy before and after compression test revealed that this unusual plasticity results from dynamic change in distribution of sp2 and sp3 bonds. During plastic deformation, the number of sp2 bonds decreases but the number of sp3 bonds increases. Carbon atoms, which have sp2 bonds, seem to be reconfigured to form sp3 bond, which is thermodynamically preferable under compression. In addition, we found that both compressive fracture strength and compressive maximum strength are nearly independent of porosity unlike the hardness that scales with the porosity. We think that the porosity-independent strength could be related to the size-affected strength of nanoscale ligand. Larger pores reduce the density, but the size reduction of ligand enhances its strength. These two contributions compensate each other, leading to the negligible change in strength of the entire nanoporous structure. Interestingly, all structures, both fully dense and nanoporous structures, in our study demonstrate the modulus of resilience much higher than most engineering materials due to their low Young’s modulus, implying that amorphous carbon materials have an exceptional capability to absorb and release the mechanical energy per a given volume. However, yield strength of our fully dense amorphous carbon was found to be slightly lower than that of amorphous carbon published in other works. Complete diffuse diffraction pattern indicates that our amorphous carbon possesses the almost complete random arrangement of carbon. This liquid-like structure could be beneficial to lower mass density but does not seem to be desirable to obtain high strength. It would be necessary to control the distribution of a short-range ordering to obtain the improved yield strength without sacrificing the mass density and the ductility much by optimizaing the synthesis condition or performing the post thermal-mechanical treatment. All these efforts will pave a new pathway to create light, strong, and tough carbon nanostructures for their future structural applications.

 

Zhongyuan passed his PhD proposal defense! Congratulations!

Zhongyuan passed his PhD proposal defense! Many Congratulations!

Presentation title: In-situ mechanical characterization of hybrid organic-inorganic nanocomposites

Abstract: Engineering the modulus of resilience, the measure of a material’s ability to store and release elastic strain energy, is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanoscale such as for micro-/nano-electro-mechanical-systems (MEMS). Polymer based nanocomposite material is promising but it is difficult to introduce a large content filler without aggregation. To overcome these issues, we synthesized AlOx-reinforced SU-8 nanocomposite nanopillars by the vapor phase infiltration (VPI) method. According to the TEM analysis, the AlOx could infiltrate about 50 nm depth beneath the surface with uniform distribution and therefore, our nanocomposite stays as a core-shell structure. To analyze the mechanical performance of our nanocomposite, micropillar compression testing at different strain rates was implemented. Our preliminary results show that AlOx/SU-8 nanocomposite exhibit an ultra-high modulus of resilience (~15 MJ/m3) and the strain rate has weak effects on the resilience property of our composites. To quantitively understand the high performance of our nanocomposite, we utilize analytical modeling and molecular dynamics simulation method to explore the mechanism. The results show that the ultrahigh modulus of resilience originates from the low aspect ratio shape of amorphous aluminum oxide nano-particulates, the full occupation of these nano-particulates in the free volume of the infiltrated layer, and the extremely thin aluminum oxide link emanating from nano-particulates. The strain rate affects Young’s modulus more than the yield strength, which results from the relatively low cross-link degree of the SU-8 matrix, leading to a weak effect on the modulus of resilience.

Our experimental and numerical results demonstrate that vapor-phase infiltration is an excellent compositization method to produce a polymer nanocomposite that can absorb and release a significantly large amount of elastic strain energy. However, the infiltration depth of AlOx is only ~50 nm, which strongly limits the reinforcement efficiency. And our recent study shows that ZnOx fillers could fully infiltrate inside the SU-8 micropillar.

In this proposal, therefore, we propose to investigate the mechanical properties of ZnOx-reinforced and InOx-reinforced SU-8 nanocomposites and try to identify the infiltration mechanism of inorganic fillers to advance the VPI synthesis method. Since the rapid thermal annealing manufacturing process could crystallize the ZnOx fillers, we also plan to analyze whether filler crystallization could influence the modulus of resilience properties of the nanocomposite. Research outcomes will eventually allow us to develop high-performance polymer nanocomposites with the high modulus of resilience, which will be greatly useful to create high-power artificial muscles in robotics, soft electronics panels, and energy-efficient micro-/nano-electro-mechanical actuators.

Kyle passed his MS defense! Congratulations!

Kyle passed his Master (Plan A) defense! Many Congratulations. In his presentation, Kyle has discussed “Micro-mechanical characterization of additive manufactured metals”. His projects (cold spray and wire-arc-additive-manufacture) have been been supported by US Army Research Laboratory.